Vascularization, high-volume solution flow, and localized roles for enzymes of sucrose metabolism during tumorigenesis by Agrobacterium tumefaciens.

نویسندگان

  • Rebecca Wächter
  • Markus Langhans
  • Roni Aloni
  • Simone Götz
  • Anke Weilmünster
  • Ariane Koops
  • Leopoldine Temguia
  • Igor Mistrik
  • Jan Pavlovkin
  • Uwe Rascher
  • Katja Schwalm
  • Karen E Koch
  • Cornelia I Ullrich
چکیده

Vascular differentiation and epidermal disruption are associated with establishment of tumors induced by Agrobacterium tumefaciens. Here, we address the relationship of these processes to the redirection of nutrient-bearing water flow and carbohydrate delivery for tumor growth within the castor bean (Ricinus communis) host. Treatment with aminoethoxyvinyl-glycine showed that vascular differentiation and epidermal disruption were central to ethylene-dependent tumor establishment. CO2 release paralleled tumor growth, but water flow increased dramatically during the first 3 weeks. However, tumor water loss contributed little to water flow to host shoots. Tumor water loss was followed by accumulation of the osmoprotectants, sucrose (Suc) and proline, in the tumor periphery, shifting hexose-to-Suc balance in favor of sugar signals for maturation and desiccation tolerance. Concurrent activities and sites of action for enzymes of Suc metabolism changed: Vacuolar invertase predominated during initial import of Suc into the symplastic continuum, corresponding to hexose concentrations in expanding tumors. Later, Suc synthase (SuSy) and cell wall invertase rose in the tumor periphery to modulate both Suc accumulation and descending turgor for import by metabolization. Sites of abscisic acid immunolocalization correlated with both central vacuolar invertase and peripheral cell wall invertase. Vascular roles were indicated by SuSy immunolocalization in xylem parenchyma for inorganic nutrient uptake and in phloem, where resolution allowed SuSy identification in sieve elements and companion cells, which has widespread implications for SuSy function in transport. Together, data indicate key roles for ethylene-dependent vascularization and cuticular disruption in the redirection of water flow and carbohydrate transport for successful tumor establishment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutation of the miaA gene of Agrobacterium tumefaciens results in reduced vir gene expression.

vir regulon expression in Agrobacterium tumefaciens involves both chromosome- and Ti-plasmid-encoded gene products. We have isolated and characterized a new chromosomal gene that when mutated results in a 2- to 10-fold reduction in the induced expression of vir genes by acetosyringone. This reduced expression occurs in AB minimal medium (pH 5.5) containing either sucrose or glucose and containi...

متن کامل

Propagation of Rosa hybrida L. cv. Coolwater Under Tissue Culture and Transformation of the RhAA Gene via Agrobacterium tumefaciens

Rose is the most favorite cut flowers all over the world. Production of high-quality flowers, prevention, and delay of flower senescence, is a major goal in floriculture. Now a day, biotechnological approaches have been used to improve ornamental attributes. Tissue culture and genetic transformation appear to offer valuable advancements for operating floral characteristics. In this study, after...

متن کامل

Characterization of oncogene-silenced transgenic plants: implications for Agrobacterium biology and post-transcriptional gene silencing.

SUMMARY Agrobacterium tumefaciens tumorigenesis is initiated by the horizontal transfer of a suite of oncogenes that alter hormone synthesis and sensitivity in infected plant cells. Transgenic plants silenced for the iaaM and ipt oncogenes are highly recalcitrant to tumorigenesis, and present a unique resource to elucidate fundamental questions related to Agrobacterium biology and post-transcri...

متن کامل

Agrobacterium tumefaciens increases cytokinin production in plastids by modifying the biosynthetic pathway in the host plant.

Agrobacterium tumefaciens infects plants and induces the formation of tumors called "crown galls" by integrating the transferred-DNA (T-DNA) region of the Ti-plasmid into the plant nuclear genome. Tumors are formed because the T-DNA encodes enzymes that modify the synthesis of two plant growth hormones, auxin and cytokinin (CK). Here, we show that a CK biosynthesis enzyme, Tmr, which is encoded...

متن کامل

Npgrj_Nprot_97 1..6

Collective efforts of several laboratories in the past two decades have resulted in the development of various methods for Agrobacterium tumefaciens–mediated transformation of Arabidopsis thaliana. Among these, the floral dip method is the most facile protocol and widely used for producing transgenic Arabidopsis plants. In this method, transformation of female gametes is accomplished by simply ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 133 3  شماره 

صفحات  -

تاریخ انتشار 2003